
13

7 Example II: A Recurrent Network

Recurrent neural networks are especially suited for modelling of temporal sequences (time

series). In order to illustrate the use of recurrent networks in NNDT, a simple example was

designed: The task is to produce two trigonometric oscillations,

f i

f i

1

2

18

18

= FH IK
= FH IK

sin

cos

π

π
 i = 0, ... ,72

Figure 15.

without using external inputs, i.e., by an autonomous

system. The sequence plotted in state space (f1, f2)

produces a circular trajectory. It can be easily shown [10]

that this sequence can be exactly reproduced by a fully

recurrent two-node network with linear activation function.

Here, however, we study a network with [-1,1] sigmoidal

activation (Figure 15, which is part of MLP setup

window). The reason for using a nonlinear model is that our

goal is to create a periodic attractor.

Figure 16 shows the setup of the network with two

(fictitious) input nodes and two feedback nodes in the

output layer. We use a scaling of 0.5 on the two f's in

order to make it possible to use the activation function

of Equation (4), since the nodes will have to operate in

their linear ranges (arguments close to zero) to

reconstruct the sequence.

f 1 f 2

Figure 16.
The result of a network

Figure 17.

trained from one starting

point (seed=40, α=0.1) is

depicted in Figure 17.

Here, the network has

converged to a false

minimum, a fixed point at

− −0 07 0 045. , .a f . Such

problems typically occur

when recurrent networks

are trained. Therefore, it

may be advisable to vary

the location of the

starting point. For

instance, using seed=75,

the network converges

rapidly to the correct

14

solution. Another possible remedy is to use so called teacher forcing, where the true outputs

(targets) are occasionally fed back instead of the networks outputs. This may force the

network's state back to the desired trajectory, which facilitates the training. Usually, there is no

need to extend the training with teacher forcing beyond the point where the network has

captured the main features of the attractor. In the present example, teacher forcing on every

30th pattern was applied. After six iterations from the starting point (seed=40, α=0.1), the

network is seen to have created oscillatory sequences, which resemble the desired ones (left

graph in Figure 18). The phase portrait (right graph) also indicates periodic behaviour.

Figure 18.

If the training is continued without teacher forcing from this point onward, the network

converges upon the correct solution in 24 iterations, see Figure 19.

Figure 19.

15

The optimal network weights are shown in Figure 20,

which is an excerpt from the Network state window.

Figure 20.

The fact that NNDT has estimated a proper initial

state of the network is illustrated in Figure 21, which

shows the evolution of the network from a modified

initial state, y0 1 1= (,)T . The right graph illustrates

that there is a circular attractor (the deformation of it

being due to the different scaling), while the left graph

shows that the oscillations now produced by the

network are in wrong phase. This stresses the

importance to estimate not only the weights but also

y0 in recurrent networks.

Figure 21.

Because of the obvious symmetry of

the weights (cf. Fig. 20) at the

optimum, a reduced model is trained

in order to illustrate the possibilities

to include weight constraints in

NNDT. Both bias terms are assumed

constant and zero (w0=w3=0), while

for the weights w1=w5 and w2=-w4.

After a normal initialisation of the

network state (e.g., seed=40, α=0.1)

and setting w0=w3=0, the constraints

can be entered through the Equal &

constant weights window shown in

Figure 22. This two-parameter model

can be trained to yield (practically)

the same solution as reported above.
Figure 22.

16

8 Network Setup Windows: List of Options

The contents of the network setup windows are listed and the options and settings are briefly

explained. A specification of the type of the user input is given in brackets. For some options,

references to corresponding chapters in this manual are given.

MLP setup window

Filter pattern data [check box]
Activates the data pre-treatment (next two options).

Number of old val in mean filter [integer]
Selects the size of the sliding window for the mean value filter. The filter function is

disabled if 0 is given.

Number of samples between pattern formation [integer]
Specifies how many lines to be read (and filtered) before a new pattern is formed. The

option is used for reducing the number of patterns in training data. If 1 is given, a pattern

is formed for every line in the file.

Number of patterns to be formed before training [integer]
Specifies the number of patterns to be used in training. If this number is reached before

the entire pattern file is read, the remaining lines in the file will be ignored.

Optimisation task [dropdown list]
All network weights: Normal training where all weights and biases (and initial states) are

open parameters.

Gain terms on input signals: Only gain terms for the inputs are adjusted during training,

the network weights are kept at their initial values.

Gain terms on output signals: Only gain terms for the outputs are adjusted during

training, the network weights are kept at their initial values.

Gain terms on input and output signals: Only gain terms for the inputs and the outputs

are adjusted during training, the network weights are kept at their initial values.

Max number of iterations [integer]
Specifies the maximum number of iterations in training. After this number is reached, the

algorithm aborts.

Number of nodes in each layer [column of integers]
Specifies the number of hidden layers and the number of nodes in each hidden layer.

When an element in the table is chosen, a list with the available choices is shown. The

numbers of input and output nodes are also shown in the table but these numbers can

only be changed in the pattern file setup form or by a modifcation of the recurrent links.

Activation function [column of integers] (Chapter 2)
Specifies the activation function for the nodes in the hidden layers and in the output

layer. When an element in the table is chosen, a list with the available choices is shown.

The activation function for the input nodes is always the identity function.

17

Number of recurrent links [integer] (Chapter 2)
Specifies the number of feedback connections. For each feedback connection, a fictitious

input node is created.

Output nodes to feed back [row of integers] (Chapter 2)
Specifies the output nodes for the feedback connections. The output nodes are numbered

according to the picture in the main window; the leftmost node (first true output node) is

number 1. A fictitious output node is created if the number specified for the feed-back

node exceeds the number of true output nodes.

MLP advanced setup window

Analytical derivatives [check box] (Chapter 3)
Switch for selecting analytical expressions to be used for the calculation of the Jacobian.

For some special network configurations (e.g. networks with weight equalities),

analytical expressions are not available and numerical derivatives are used automatically.

Limit parameter values [check box]
Activates the parameter limits specified in the two boxes below.

min, max [real values]
Specifies lower and upper limits for the weights.

Limit relative change of parameters [check box] (Chapter 4)
Activates the limit for relative parameter change specified in the box below.

Max relative change per iteration (%) [real value, >0] (Chapter 4)
Specifies the maximum percentage change for each parameter (absolute value) allowed

per iteration in the training.

 Penalty factor [real value] (Chapter 4)
Specifies the factor in the penalty term (Equation (9)). The penalty function is switched

off if 0 is given.

Number of separate periods [integer] (Chapter 2)
Specifies the number of separate periods in the training data for a recurrent network.

First patterns in the periods [row of integers]
Specifies the numbers for the first patterns in the periods. For these patterns, the

fictitious input nodes are set to their initial states.

Use equal initial states [check box]
Specifies that each input node only has one initial state, used for all periods. Otherwise,

separate initial states are estimated for each period.

Use teacher forcing [check box] (Chapter 4)
Activates the teacher forcing option for recurrent networks with true outputs. The option

is specified in the box below.

Desired outputs are used each :th pattern.

Specifies the interval between teacher forcing actions. Teacher forcing is never used for

the first pattern in a period.

18

9 System Requirements and Installation

NNDT runs under MS Windows 3.1 on personal computers. The program itself

(NNDT.EXE), the network routines (NNDTCALC.DLL) and the help file (NNDT.HLP) use

approximately 200 K disk space. Together with a number of Visual Basic modules (.DLL and

.VBX files) which are required, but in many cases already present on the system, the total use

of disk space is approximately 1500 K. The computer should be equipped with a display of at

least VGA monochrome class, but a colour monitor is preferable for the graphics.

NNDT is delivered with a setup program which automatically copies the program files to a

user-specified directory and the VB modules to the \SYSTEM directory. Two pattern files and

corresponding setup files are included for demonstration.

References

[1] Rumelhart, D. E. and J. McClelland (Eds.), Parallel Distributed Processing, MIT Press,

1986.

[2] Bulsari, A. B. and H. Saxén, "System identification using the symmetric logarithmoid as an

activation function in a feed-forward neural network", Neural network world 1 (1991) 221-

224.

[3] Bulsari, A. B. and H. Saxén, "A Recurrent Network for Modeling Noisy Temporal

Sequences", Neurocomputing 6 (1994), in press.

[4] Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes,

Cambridge University Press, Cambridge, 1986.

[5] Marquardt, D. W., "An algorithm for least-squares estimation of nonlinear parameters", J.

SIAM 11 (1963) 431-441.

[6] Williams, R. J. and D. Zipser, "A Learning Algorithm for Continually Running Fully

Recurrent Neural Networks", Neural Computation 1 (1989) 270-280.

[7] Jordan, M. I., "Attractor dynamics and parallelism in an connectionist sequential machine",

Proceedings of the Eight Annual Conference of the Cognitive Science Society, Amherst, 1986,

pp. 531-546. Hillsdale: Erlbaum.

[8] Weigend, A. S., B. A. Huberman and D. E. Rumelhart, "Predicting the Future: A

Connectionist Approach", International Journal of Neural Systems 1 (1990) 193-209.

[9] Finnoff, W., F. Hegert and H. G. Zimmermann, "Improving Model Selection by

Nonconvergent Methods", Neural Networks 6 (1993) 771-783.

[10] Bulsari, A. B. and H. Saxén, "A Partially Recurrent Connectionist Model", Proceedings of

the 10th European Conference on Artificial Intelligence, (Ed. B. Neumann), Vienna, Austria,

1992, pp. 198-202.

